AI Agents Module

The AI Agents module is agnostic to the library used. The SDK will instrument existing AI agents in certain frameworks or libraries (at the time of writing those are openai-agents in Python and Vercel AI in Javascript). You may need to manually annotate spans for other libraries.

For your AI agents data to show up in the Sentry AI Agents Insights, a couple of different spans must be created and have well-defined names and data attributes. See below.

We try to follow the OpenTelemetry Semantic Conventions for Generative AI as close as possible. Being 100% compatible is not yet possible, because OpenTelemetry has "Span Events" which Sentry does not support. The input/output to/from an AI model is stored in span events in OpenTelemetry. Since this is not possible in Sentry, we add this data onto span attributes as a list.

Describes AI agent invocation.

  • The spans op MUST be "gen_ai.invoke_agent".
  • The span name SHOULD be "invoke_agent {gen_ai.agent.name}".
  • The gen_ai.operation.name attribute MUST be "invoke_agent".
  • The gen_ai.agent.name attribute SHOULD be set to the agents name. (e.g. "Weather Agent")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.available_toolsstringoptionalList of dictionaries describing the available tools. [0]"[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]"
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.messagesstringoptionalList of dictionaries describing the messages (prompts) sent to the LLM [0], [1]"[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]"
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7
gen_ai.response.tool_callsstringoptionalThe tool calls in the model’s response. [0]"[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]"
gen_ai.response.textstringoptionalThe text representation of the model’s responses. [0]"[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]"
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types (like int, float, boolean, string). This means you need to use a stringified version of a list of dictionaries. Do NOT set [{"foo": "bar"}] but rather the string "[{\"foo\": \"bar\"}]".
  • [1]: Each message item uses the format {role:"", content:""}. The role can be "user", "assistant", or "system". The content can be either a string or a list of dictionaries.

This span represents a request to an AI model or service that generates a response or requests a tool call based on the input prompt.

  • The span op MUST be "gen_ai.{gen_ai.operation.name}". (e.g. "gen_ai.chat")
  • The span name SHOULD be {gen_ai.operation.name} {gen_ai.request.model}". (e.g. "chat o3-mini")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.available_toolsstringoptionalList of dictionaries describing the available tools. [0]"[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]"
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.messagesstringoptionalList of dictionaries describing the messages (prompts) sent to the LLM [0], [1]"[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]"
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7
gen_ai.response.tool_callsstringoptionalThe tool calls in the model’s response. [0]"[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]"
gen_ai.response.textstringoptionalThe text representation of the model’s responses. [0]"[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]"
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types. This means you need to use a stringified version of a list of dictionaries. Do NOT set [{"foo": "bar"}] but rather the string "[{\"foo\": \"bar\"}]".
  • [1]: Each message item uses the format {role:"", content:""}. The role can be "user", "assistant", or "system". The content can be either a string or a list of dictionaries.

Describes a tool execution.

  • The spans op MUST be "gen_ai.execute_tool".
  • The spans name SHOULD be "gen_ai.execute_tool {gen_ai.tool.name}". (e.g. "gen_ai.execute_tool query_database")
  • The gen_ai.tool.name attribute SHOULD be set to the name of the tool. (e.g. "query_database")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.tool.descriptionstringoptionalDescription of the tool executed."Tool returning a random number"
gen_ai.tool.inputstringoptionalInput that was given to the executed tool as string."{\"max\":10}"
gen_ai.tool.namestringoptionalName of the tool executed."random_number"
gen_ai.tool.outputstringoptionalThe output from the tool."7"
gen_ai.tool.typestringoptionalThe type of the tools."function"; "extension"; "datastore"

A span that describes the handoff from one agent to another agent.

  • The spans op MUST be "gen_ai.handoff".
  • The spans name SHOULD be "handoff from {from_agent} to {to_agent}".
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Some attributes are common to all AI Agents spans:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.systemstringrequiredThe Generative AI product as identified by the client or server instrumentation. [0]"openai"
gen_ai.request.modelstringrequiredThe name of the AI model a request is being made to."o3-mini"
gen_ai.operation.namestringoptionalThe name of the operation being performed. [1]"chat"
gen_ai.agent.namestringoptionalThe name of the agent this span belongs to."Weather Agent"

[0] Well defined values for data attribute gen_ai.system:

ValueDescription
"anthropic"Anthropic
"aws.bedrock"AWS Bedrock
"az.ai.inference"Azure AI Inference
"az.ai.openai"Azure OpenAI
"cohere"Cohere
"deepseek"DeepSeek
"gcp.gemini"Gemini
"gcp.gen_ai"Any Google generative AI endpoint
"gcp.vertex_ai"Vertex AI
"groq"Groq
"ibm.watsonx.ai"IBM Watsonx AI
"mistral_ai"Mistral AI
"openai"OpenAI
"perplexity"Perplexity
"xai"xAI

[1] Well defined values for data attribute gen_ai.operation.name:

ValueDescription
"chat"Chat completion operation such as OpenAI Chat API
"create_agent"Create GenAI agent
"embeddings"Embeddings operation such as OpenAI Create embeddings API
"execute_tool"Execute a tool
"generate_content"Multimodal content generation operation such as Gemini Generate Content
"invoke_agent"Invoke GenAI agent
Was this helpful?
Help improve this content
Our documentation is open source and available on GitHub. Your contributions are welcome, whether fixing a typo (drat!) or suggesting an update ("yeah, this would be better").