AI Agents Module
The AI Agents module is agnostic to the library used. The SDK will instrument existing AI agents in certain frameworks or libraries (at the time of writing those are openai-agents
in Python and Vercel AI
in Javascript). You may need to manually annotate spans for other libraries.
For your AI agents data to show up in the Sentry AI Agents Insights, a couple of different spans must be created and have well-defined names and data attributes. See below.
We try to follow the OpenTelemetry Semantic Conventions for Generative AI as close as possible. Being 100% compatible is not yet possible, because OpenTelemetry has "Span Events" which Sentry does not support. The input/output to/from an AI model is stored in span events in OpenTelemetry. Since this is not possible in Sentry, we add this data onto span attributes as a list.
Describes AI agent invocation.
- The spans
op
MUST be"gen_ai.invoke_agent"
. - The span
name
SHOULD be"invoke_agent {gen_ai.agent.name}"
. - The
gen_ai.operation.name
attribute MUST be"invoke_agent"
. - The
gen_ai.agent.name
attribute SHOULD be set to the agents name. (e.g."Weather Agent"
) - All Common Span Attributes SHOULD be set (all
required
common attributes MUST be set).
Additional attributes on the span:
Data Attribute | Type | Requirement Level | Description | Example |
---|---|---|---|---|
gen_ai.request.available_tools | string | optional | List of dictionaries describing the available tools. [0] | "[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]" |
gen_ai.request.frequency_penalty | float | optional | Model configuration parameter. | 0.5 |
gen_ai.request.max_tokens | int | optional | Model configuration parameter. | 500 |
gen_ai.request.messages | string | optional | List of dictionaries describing the messages (prompts) sent to the LLM [0], [1] | "[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]" |
gen_ai.request.presence_penalty | float | optional | Model configuration parameter. | 0.5 |
gen_ai.request.temperature | float | optional | Model configuration parameter. | 0.1 |
gen_ai.request.top_p | float | optional | Model configuration parameter. | 0.7 |
gen_ai.response.tool_calls | string | optional | The tool calls in the model’s response. [0] | "[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]" |
gen_ai.response.text | string | optional | The text representation of the model’s responses. [0] | "[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]" |
gen_ai.usage.input_tokens.cached | int | optional | The number of cached tokens used in the AI input (prompt) | 50 |
gen_ai.usage.input_tokens | int | optional | The number of tokens used in the AI input (prompt). | 10 |
gen_ai.usage.output_tokens.reasoning | int | optional | The number of tokens used for reasoning. | 30 |
gen_ai.usage.output_tokens | int | optional | The number of tokens used in the AI response. | 100 |
gen_ai.usage.total_tokens | int | optional | The total number of tokens used to process the prompt. (input and output) | 190 |
- [0]: Span attributes only allow primitive data types (like
int
,float
,boolean
,string
). This means you need to use a stringified version of a list of dictionaries. Do NOT set[{"foo": "bar"}]
but rather the string"[{\"foo\": \"bar\"}]"
. - [1]: Each message item uses the format
{role:"", content:""}
. Therole
can be"user"
,"assistant"
, or"system"
. Thecontent
can be either a string or a list of dictionaries.
This span represents a request to an AI model or service that generates a response or requests a tool call based on the input prompt.
- The span
op
MUST be"gen_ai.{gen_ai.operation.name}"
. (e.g."gen_ai.chat"
) - The span
name
SHOULD be{gen_ai.operation.name} {gen_ai.request.model}"
. (e.g."chat o3-mini"
) - All Common Span Attributes SHOULD be set (all
required
common attributes MUST be set).
Additional attributes on the span:
Data Attribute | Type | Requirement Level | Description | Example |
---|---|---|---|---|
gen_ai.request.available_tools | string | optional | List of dictionaries describing the available tools. [0] | "[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]" |
gen_ai.request.frequency_penalty | float | optional | Model configuration parameter. | 0.5 |
gen_ai.request.max_tokens | int | optional | Model configuration parameter. | 500 |
gen_ai.request.messages | string | optional | List of dictionaries describing the messages (prompts) sent to the LLM [0], [1] | "[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]" |
gen_ai.request.presence_penalty | float | optional | Model configuration parameter. | 0.5 |
gen_ai.request.temperature | float | optional | Model configuration parameter. | 0.1 |
gen_ai.request.top_p | float | optional | Model configuration parameter. | 0.7 |
gen_ai.response.tool_calls | string | optional | The tool calls in the model’s response. [0] | "[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]" |
gen_ai.response.text | string | optional | The text representation of the model’s responses. [0] | "[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]" |
gen_ai.usage.input_tokens.cached | int | optional | The number of cached tokens used in the AI input (prompt) | 50 |
gen_ai.usage.input_tokens | int | optional | The number of tokens used in the AI input (prompt). | 10 |
gen_ai.usage.output_tokens.reasoning | int | optional | The number of tokens used for reasoning. | 30 |
gen_ai.usage.output_tokens | int | optional | The number of tokens used in the AI response. | 100 |
gen_ai.usage.total_tokens | int | optional | The total number of tokens used to process the prompt. (input and output) | 190 |
- [0]: Span attributes only allow primitive data types. This means you need to use a stringified version of a list of dictionaries. Do NOT set
[{"foo": "bar"}]
but rather the string"[{\"foo\": \"bar\"}]"
. - [1]: Each message item uses the format
{role:"", content:""}
. Therole
can be"user"
,"assistant"
, or"system"
. Thecontent
can be either a string or a list of dictionaries.
Describes a tool execution.
- The spans
op
MUST be"gen_ai.execute_tool"
. - The spans
name
SHOULD be"gen_ai.execute_tool {gen_ai.tool.name}"
. (e.g."gen_ai.execute_tool query_database"
) - The
gen_ai.tool.name
attribute SHOULD be set to the name of the tool. (e.g."query_database"
) - All Common Span Attributes SHOULD be set (all
required
common attributes MUST be set).
Additional attributes on the span:
Data Attribute | Type | Requirement Level | Description | Example |
---|---|---|---|---|
gen_ai.tool.description | string | optional | Description of the tool executed. | "Tool returning a random number" |
gen_ai.tool.input | string | optional | Input that was given to the executed tool as string. | "{\"max\":10}" |
gen_ai.tool.name | string | optional | Name of the tool executed. | "random_number" |
gen_ai.tool.output | string | optional | The output from the tool. | "7" |
gen_ai.tool.type | string | optional | The type of the tools. | "function" ; "extension" ; "datastore" |
A span that describes the handoff from one agent to another agent.
- The spans
op
MUST be"gen_ai.handoff"
. - The spans
name
SHOULD be"handoff from {from_agent} to {to_agent}"
. - All Common Span Attributes SHOULD be set (all
required
common attributes MUST be set).
Some attributes are common to all AI Agents spans:
Data Attribute | Type | Requirement Level | Description | Example |
---|---|---|---|---|
gen_ai.system | string | required | The Generative AI product as identified by the client or server instrumentation. [0] | "openai" |
gen_ai.request.model | string | required | The name of the AI model a request is being made to. | "o3-mini" |
gen_ai.operation.name | string | optional | The name of the operation being performed. [1] | "chat" |
gen_ai.agent.name | string | optional | The name of the agent this span belongs to. | "Weather Agent" |
[0] Well defined values for data attribute gen_ai.system
:
Value | Description |
---|---|
"anthropic" | Anthropic |
"aws.bedrock" | AWS Bedrock |
"az.ai.inference" | Azure AI Inference |
"az.ai.openai" | Azure OpenAI |
"cohere" | Cohere |
"deepseek" | DeepSeek |
"gcp.gemini" | Gemini |
"gcp.gen_ai" | Any Google generative AI endpoint |
"gcp.vertex_ai" | Vertex AI |
"groq" | Groq |
"ibm.watsonx.ai" | IBM Watsonx AI |
"mistral_ai" | Mistral AI |
"openai" | OpenAI |
"perplexity" | Perplexity |
"xai" | xAI |
[1] Well defined values for data attribute gen_ai.operation.name
:
Value | Description |
---|---|
"chat" | Chat completion operation such as OpenAI Chat API |
"create_agent" | Create GenAI agent |
"embeddings" | Embeddings operation such as OpenAI Create embeddings API |
"execute_tool" | Execute a tool |
"generate_content" | Multimodal content generation operation such as Gemini Generate Content |
"invoke_agent" | Invoke GenAI agent |
Our documentation is open source and available on GitHub. Your contributions are welcome, whether fixing a typo (drat!) or suggesting an update ("yeah, this would be better").